
Algebraic convergent perturbation theory for quantum systems with strong anharmonicity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 5145

(http://iopscience.iop.org/0305-4470/20/15/029)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 20:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.  20 (1987) 5145-5155 .  Printed in the UK 
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Abstract. A novel perturbative method based on the non-trivial decomposition of the 
Hamiltonian into the unperturbed part and the perturbation is proposed. The method 
admits using practically any approximate solution of the Schrodinger equation as a starting 
point by constructing a perturbatice expansion. The resulting series is convergent. The 
procedure of calculation of its terms is purely algebraic. The method is available for 
calculations in both the weak- and  strong-coupling regimes, and  for estimating and  increas- 
ing the accuracy of variational analysis results. 

1. Introduction 

The principal trouble with the standard perturbation theory (SPT), which long remains 
a basic tool in studying quantum mechanical systems with polynomial potentials, lies 
in the fact that the resulting series diverges. This blocks an extension into a domain 
of strong anharmonicity. 

The origin of this divergence has been studied by Dyson (1952): for a perturbed 
oscillator and  similar systems the perturbation potential increases at  large distance 
more rapidly that the unperturbed one, irrespective of how small the coupling constant 
is. Therefore the physics of the problem is drastically changed if the sign of the 
coupling changes: the stable system transforms to an unstable one. This implies a 
branch-point singularity at the origin of the complex-coupling constant plane, and 
hence the zero radius of convergence of perturbative expansions. This reasoning, 
known as ‘Dyson’s instability argument’, can be easily translated into the path integral 
language, where the instability of the system manifests itself as the divergence of the 
Euclidean path integral. (For more details see Turbiner (1984) and Ushveridze (1983).) 

Since our aim is to solve the strong-coupling problem in the framework of a 
perturbative approach, it is sensible to try to split the Hamiltonian of interest into the 
unperturbed part and the perturbation in such a way as to circumvent Dyson’s argument. 
To discuss this possibility consider an arbitrary observable quantity allowing the 
expression via the Euclidean path integral 

A - I Dp D q . .  . exp( i I p q  d t  - I H (  p ,  q )  dr).  

Here H = H ( p ,  q )  is the classical Hamiltonian of the system which is assumed to be 
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stable, H( p,  q )  > 0. The stability of the system guarantees the convergence (existence) 
of integral (1). Evidently, any decomposition of H into the unperturbed part 
HO = HO( p ,  q )  and the perturbation H, = H - Ho = H,( p ,  9 )  leads to the following 
perturbative expansion for A: 

A =  A,,. 
n = O  

In  order to study the convergence properties of this expansion, let us introduce 
the one-parametric class of ‘Hamiltonians’ H ( E )  = Ha+ EH, and the corresponding 
class of ‘observables’ 

Expanding ( 3 )  in powers of E 

A ( € ) =  2 &“An (4) 
n = O  

we note that the radius of convergence of this expansion is determined by the locations 
of singularities of A( E )  in a complex E plane. Examining the system under consideration 
from the point of view of Dyson-type singularities, we see that they all lie outside (or 
at the boundary of) the unit radius circle, provided the condition 

is satisfied. Actually, for any le1 < 1 the system is stable since condition (5)  guarantees 
the existence of integral (3) .  Thus expression (4) converges for any (e l  < 1. This fact, 
supplemented by the existence of integral ( I ) ,  allows us to conclude that the expansion 
(4) will be convergent for the ‘physical’ value E = 1, for which H ( F )  = U, A ( & )  = A 
and (4) coincides with (2) .  Hence condition (5) is sufficient for the convergence of 
the perturbative series ( 2 ) .  

Thus our problem is reduced to finding such a splitting of the Hamiltonian H into 
the unperturbed part and the perturbation that guarantees the sufficient smallness of 
the perturbation in comparison with the unperturbed part for any p and 9. If we wish 
to construct the perturbation theory converging in both the weak and strong coupling 
regimes then we must guarantee the fulfilment of (5) for any couplings. However, a 
straightforward realisation of this idea requires the unperturbed problem to be exactly 
soluble and we know few exactly soluble problems in quantum mechanics. But 
fortunately this is a fictitious limitation: one could construct a good perturbative scheme 
without imposing the simple-minded exact solubility and without requiring that the 
unperturbed system is of particular physical meaning (Turbiner 1984, Ushveridze 1983, 
1984, 1986, Shaverdyan and Ushveridze 1983). 

In  this paper we formulate the practical realisation of such an  approach. We show 
that a strong-coupling problem in quantum mechanics can be solved in the framework 
of the non-standard perturbation theory ( NPT) ,  based on the non-trivial decomposition 
of the Hamiltonian into the unperturbed part and the perturbation. In  contrast with 
the SPT, the NFT which is proposed here has the following advantages. 

( i )  It enables us to use practically any approximate solution of the Schrodinger 
equations as a starting point by constructing the perturbative expansions. 

( i i )  It guarantees the necessary smallness of perturbation in comparison with the 
unperturbed part irrespective of the magnitudes of the coupling constants. This leads 
to convergence of the resulting series in both the weak- and strong-coupling regimes. 

Hdp, 4 )  /Hl(P, 411 ( 5 )  



Algebraic convergent perturbation theory 5147 

(iii) An effective proximity between the exact and approximate solutions plays the 
role of the small parameter, determining the rapidity of the NFT series convergence. 

(iv) The procedure of calculation of the NFT series terms is purely algebraic. 
These properties of NPT enable us to consider it as a convenient instrument for 

estimating and increasing the accuracy of variational analysis result<. It is worth 
noticing that the early versions of convergent perturbative theory d o  not simultaneously 
satisfy the four above-mentioned conditions (see Halliday and Suranyi 1980, Turbiner 
1984, Turbiner and Ushveridze 1983, 1984, 1986, Schaverdyan and Ushveridze 1983). 

This paper is organised as follows. In 9 2 we state the problem and in 9 3 we choose 
the representation in which the Schrodinger equation to be solved assumes an especially 
simple form. In § 4 we construct the NFT scheme and demonstrate its algebraic nature. 
In 5 5 the convergence of the constructed expansions is proved. Numerical examples 
are considered in 9 6. 

2. The problem 

Let H be the Hamiltonian of the quantum mechanical system having a discrete spectrum 
in the Hilbert space W. The degeneracy is allowed. 

Consider the Schrodinger equation 

H$ = E+ (6) 

for the particular state of interest and denote by WE the set of all its solutions 4 
corresponding to the eigenvalue E. Then the non-zeroth approximate solution 

of this equation may be obtained by means of the variational method. 

by constructing the perturbative expansions 
Our purpose is to use $o and  Eo as a starting point (as a zeroth-order approximation) 

(8)  

converging to the non-zeroth exact solution 4 and E of equation (1 ) .  In order to 
obtain such expansions it is necessary to decompose the Hamiltonian into the 
unperturbed part and the perturbation 

H = Ho+ H, (9) 

in such a way as to guarantee: (i) the sufficient proximity between the exact and the 
unperturbed Hamiltonians, (ii) the exact solubility of the unperturbed Schrodinger 
equation, and  (iii) the belonging of the approximate solution (7) to the unperturbed 
Hamiltonian spectrum. 

The realisation of this problem requires the choice of an appropriate representation, 

rL = 40+ 4, + $2 + . . . E = E,, + E ,  + E? + . . . 

3. The Lanczos representation 

Let us define WO as the set of all elements of W of the form 

where f (  H )  are arbitrary functions. This set has the following properties. 
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Statement 1 .  WO is an invariant subspace of W, i.e. if rp E WO then Hrp E WO as well. 
This statement fd lows  immediately from the definition (10). Being trivial, it is 

nevertheless very important for us, since it shows that the space WO can be treated as 
the Hilbert space for the operator H. Therefore the question ‘what is the spectrum of 
H in WO?’ is quite a correct one to ask. 

In  order to investigate this spectrum, consider the Schrodinger equation 

H$= E$ * E  wo (11) 
and denote by WOE the set of all its solutions IL corresponding to the eigenvalue E. 

Statement 2. I f  PE+o=O, then dim WOE = O .  If P,~!J~# 0, then dim WO, = 1. 

according to the definition (10) 
Indeed, let PE be the projector onto the eigenspace WE.  Then W,,, = PE WO and 

W O E  =(F(H)P&,}=constant x P E $ o .  (12) 
If  PE$o = 0, then WOE contains only one zero element and therefore dim WOE = 0. I f  
PE$o#O, then any element of WOE is proportional to PEGo, and consequently 
dim WO, = 1. Thus the statement is proved. 

This statement shows that the spectrum of H in WO is non-degenerate irrespective 
of the degeneracy of the spectrum of H in the initial space W. Note that this property 
makes WO similar to the Hilbert space for the one-dimensional quantum system. 
Formula ( I O )  confirms our observation. Indeed, even if the WO elements are the 
functions of many variables (the multidimensional case) there exists a simple correspon- 
dence between these elements and the function of one variable. 

Now let us introduce the orthonormalised basis in WO. The basis functions can 
be chosen as 

4 w  = P w ( H ) * o  (13) 

( 4 w ,  41) = &/. (14) 

4 m  =E Pm(E, )y ,  * r  E ( $ I ,  4 Y )  = 8 , k  (15) 

1 Pm(E,)P/(Et)yf= a m /  ( 1 6 )  

where P,(H)  are the mth order polynomials fixed by the conditions 

Representing 4,,, in the form 

I 

and substituting (15) into (14) one finds that the conditions (14) are equivalent to 

I 

with constants yf playing the role of the discrete weight function. This implies that 
P,,( H )  can be considered as orthogonal polynomials of a discrete variable (Bateman 
and Erdelyi 1953). 

Statement 3. (This is very important.) In the basis 4n the Hamiltonian H has a 
three-diagonal form, i.e. 

f f n w = ( 4 f l ~ ~ 4 W ) = o  if I n - m l > l .  (17 )  
This statement, known as a Lanczos theorem, allows a very simple proof. Indeed, 

from the relations 
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it follows that the equality H,, = O  holds for any I >  m S  1. Since H is the Hermitian 
operator, it should also hold in the case when 1 < m - 1 .  Thus, the statement is proved 
(Lanczos 1950, Wilkinson 1965). 

In what follows we shall use for the basis 4,,, the term of the Lanczos basis. For 
the non-vanishing matrix elements of H in the Lanczos basis we have 

where 

bo b ,  . . .  bn 
bl b, ' .  . b,+l 

bn b , , ,  ' .  . b2n 

A - ,  = 1 An = det . . .  . . .  . . .  

b ,  b2 . . .  
B- ,  = O  B, = det . . .  . . .  

bn bnil . . . biiiIi 

b, = ($oH"$o)- (22) 

These formulae are the trivial consequences of the general theory of orthogonalisation 
(Bateman and Erdelyi 1953). 

Statements 1-3 enable us to assume that the space WO is more convenient for 
immediate realisation of our programme than the initial one W. Note, however, that 
the transition from equation (6) to the more simple equation ( l l ) ,  assuming an 
especially simple form in a Lanczos basis, is available if and only if the exact 
wavefunction to be found is known to belong to the Lanczos space WO. The following 
theorems show when this is possible. 

Theorem 1. Let $o be a good approximation for (1, E WE such that 

Then WE has a non-zeroth projection on the space WO and consequently the eigenvalue 
E can be found from equation ( 1 1 ) .  

Roof From inequality (23) it seems that 

Hence, PE& = 0 and, according to statement 2, we obtain the assertion of this theorem. 
From this theorem it follows that any sufficiently good variational solution of equation 
(5) can be used as a zeroth-order approximation in the scheme to be proposed. 

Theorem 2. Let $o be a positive definite trial function. Then the ground-state eigenfunc- 
tion t,b E W E  belongs to WO and consequently E can be found from equation (1 1 ) .  
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Prooj It is known that the ground-state eigenfunction does not have nodes. Hence, 
it cannot be orthogonal to the function. From the non-degeneracy of the ground state 
and from statement 2 one obtains the assertion of this theorem. 

In what follows we assume the requirements of the theorems 1 and/or 2 to be satisfied. 

4. The NPT method 

The purpose of this section is to decompose the Hamiltonian H into the unperturbed 
part Ho and the perturbation HI in such a way as to guarantee the exact solubility of 
the unperturbed Schrodinger equation and the belonging of the approximate solution 
( 7 )  to the unperturbed Hamiltonian spectrum. 

To construct such a decomposition, recall that in the Lanczos basis 4,, the 
Hamiltonian H has a three-diagonal form and that the zeroth basis function 4o is 
proportional to the trial eigenfunction I L 0 .  Hence, the simplest way to satisfy both the 
above-mentioned requirements is to choose as Ho the diagonal part of H. Thus, we 
fix the unperturbed Hamiltonian in the diagonal representation, presenting the whole 
set of its eigenfunctions 4,, E WO and eigenvalues e,, = (4,,, H4,,). Note that such a 
choice of Ho is very natural from the point of view of perturbation theory approach, 
since the construction of the perturbative corrections requires a knowledge of the 
unperturbed spectrum only. Therefore, the question 'what is the concrete form of Ho 
in coordinate or moment representation?' is not essential for us. Note also, that 
choosing the unperturbed Hamiltonian in the diagonal Lanczos representation, we 
circumvent the problem of exact solubility in quantum mechanics. Now there is no 
need to deal with this problem; we simply present its solution without requiring that 
the unperturbed system is of particular physical meaning. 

Thus we have 

We see that the matrix elements of the perturbation are different from zero for the 
transitions between the neighbouring states only. Therefore all the sums over intermedi- 
ate states, appearing when constructing the perturbative corrections, become finite, 
resulting in the algebraisation of their calculation procedure. In this sense NPT is 
similar to SPT in which the algebraisation phenomenon has been revealed by Bender 
and Wu (1969). Repeating the reasoning of their paper we derive the recurrency 
relations for the NPT series terms. 

Substituting expansions (8) and (9) into equation ( 1  1) and collecting the terms of 
the same order, we obtain the equation for the N t h  correction 

{HO-EOI+N = - H i + N - - I + E N + o +  C E N - L + L  N = 1 , 2  , . . . ,  00. (26) 

Note that the exact eigenfunction + is not assumed to be normalised here. Therefore, 
without loss of generality, all the higher corrections t,hN can be taken to be orthogonal 
to I,!J~. This enables us to search the correction (LN in the form 

N - l  

L= I 
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where FNk are certain unknown constants to be found. Substitution of (27) into ( 2 6 )  
results in the required recurrency conditions 

( 2 8 )  

(29) 

) 
N - l  

F N ~  = ( Hkk - Hoe)-' ( E N - L F L ~  - F N - I , &  I H k - I , A  - F N - 1 . k  + I H k , k  + I 
L = l  

E N  = F N - I , I  H O l .  

From formulae (28) and (29) it follows that the constructing of the NFT is an  
iterative procedure. Moreover, the calculation of N t h  correction requires the knowl- 
edge of first 2 N  terms of sequence (22) only. This means that the NFT scheme is an  
extremely economical one from the point of view of its practical realisation. 

5. The convergence of the NPT procedure 

Note that the proposed choice of the unperturbed problems automatically guarantees 
the effective proximity between H o  and H, which is necessary for the series convergence. 
Indeed, the equality 

( + n ,  H $ n ) = ( 4 n >  Hod”) (30) 

means that the condition of coincidence of Ho with H is satisfied for the expectation 
values. To prove the fact that this actually leads to the convergence of the series, one 
can use the path integral method. 

Let us introduce the raising and lowering operators 

( a + ) n m  = & & + I , *  ( a )  nm = & 8 n . m + ,  

in the matrix representation. I t  can be easily proved that 

(3 1 

(32a 

From (32) it follows that the three-diagonal matrix H allows the following rep- 
resentation: 

where the coefficients PN and y N  are 

Substituting (34) into (33) and introducing the normal ordering symbol, one can rewrite 
(33) as 

H = : { F ( a + a ) + ( a + + a ) Q ( a + a ) } :  (35) 
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where 

Recall now that, if the Hamiltonian of the quantum system allows the representation 
via the normally ordered function of the raising and lowering operators, then any 
observable quantities in the system can be formally expressed by means of the path 
integral. The path integral corresponding to the Hamiltonian (35) has a form 

( F (  p 2 +  q 2 )  -2qQ( p 2 +  q 2 ) )  dr ) . (37) 

The function F (p2+q‘ )+2qQ(p‘+q2)  in (37) is the analogue of the classical 
Hamiltonian, where the first and second terms play the role of unperturbed part and 
the perturbation, respectively. 

It should be emphasised that in equation (37) the variables q and p d o  not coincide 
with the initial coordinates and momenta of the system. Moreover, representation (37) 
is one dimensional, irrespective of the dimensionality of the initial system. This is one 
more manifestation of the analogy between the Lanczos space and the Hilbert one for 
one-dimensional quantum systems. 

Note also that due to the evenness of the unperturbed classical Hamiltonian and  
the oddness of the perturbation, all odd terms of NPT expansion for the energy levels 
vanish. This assertion can also be obtained immediately from the recurrency relations 
(27)-(29). 

The following estimate plays a central role in our consideration. 

Theorem 3. I f  the Hamiltonian H is a positive definite operator, then the NPT series 
is a convergent one. 

Proof From the positivity of H it follows that the inequality 

(4, H 4 ) / ( 4 , 4 ) >  0 (38) 
holds for any 4 E WO. Choosing the function 4 in  the form 

and substituting (39) into (38) we obtain 

F ( p ) > 2 4 I Q ( p ) l .  (40) 

F ( p 2 + q Z ) >  l2qQ(p2+q2)I. (41 1 

Taking p = p 2  + q2 we see that 

The last inequality menas that the perturbation Hamiltonian is less than the unperturbed 
one for any p and q. As was shown in 0 1 (for more details see also Ushveridze (1983, 
1984)) this is a sufficient condition of the convergence of perturbative expansions for 
the quantities, allowing the representation via the functional integral. Thus, the theorem 
is proved. 
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Once the unperturbed problem is chosen to guarantee the perturbation expansion 
convergence in the asymptotic, one could try to make use of this convergence for the 
several first terms as fast as possible. In doing so, one can use the freedom to choose 
the zeroth-order approximation wavefunction CL". It is natural that the rate of the 
resulting series convergence strongly depends on the 'goodness' of this approximation. 
Indeed, first consider two non-vanishing terms of the NPT expansion for a certain 
eigenvalue E. From formulae obtained in the previous sections it follows that 

Eo = ( H )  

Now, let us assume that the trial eigenfunction ILo differs slightly from the exact 
one, CL: 

$0 = CL + Ef E -3 0. (43 1 
(The function .f can be assumed to be orthogonal to CL without loss of generality.) 
Substituting (43) into (42) one obtains 

E 2 / E o -  E .  (44) 

This means that the effective proximity between the exact and approximate solutions 
of equation (6) plays the role of the small parameter of the perturbative expansions: 
the rate of the NPT series convergence increases if E approaches zero. From this 
reasoning it follows that NPT can be used as a good instrument for estimating and 
increasing the accuracy of variational analysis results. 

6. Examples 

To demonstrate how NPT works, let us consider the problem of calculation of the 
ground and first excited states E'"' and E"' in the simple one-dimensional models of 
anharmonic oscillators with the Hamiltonian: 

a' 
ax- 

H = -,+x6. (45) 

Since the harmonic term in this Hamiltonian is absent, we are dealing with the case 
of infinitely strong anharmonicity. 

Following the proposed NPT method, let us first construct the trial function CL:'. 
It is reasonable to choose it in one of the two following forms: 

and 

which reproduce these global properties of the exact wavefunctions ILL"' that can be 
established without exactly solving the Schrodinger equation. These are: (i) the 
evenness and  oddness of $bo' and respectively, (ii) the true number of the nodes 
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and (iii) the asymptotic behaviour at infinity. Here a is the auxiliary (variational) 
parameter. Note however that the two functions in (47) are more suitable for the 
application of the proposed method, because they reproduce more accurately the 
asymptotics of exact wavefunctions + ( r )  at large x. 

Consider first the case (46). Substituting 4;' into (22) we obtain 

b',"= dxP',''(x')x" exp( - fx4 -ax2)  (48) J 
where P!,"(t) are polynomials which can be obtained from the simple recurrence 
conditions: 

+ [ a ( ~  +2r)  + (3 + 2 r  - a 2 ) t  -2at2]~',"(t) .  (49) 

The integrals (48) are the linear combinations of the well known parabolic cylinder 
functions and  hence they can be calculated without difficulties. 

The NPT series terms can be computed by using formulae, (19)-(21), (28)  and (29). 
The results of the summation of these terms up  to the sixth order are shown in table 
1 where they are compared with the 'exact' values obtained by means of non-perturba- 
tive methods (see Hioe et a1 1978, Turbiner 1984). We can see that the NPT series is 
really convergent. The accuracy of the results for E"' and E" '  are of order lo-' and  
IO-', respectively. 

Table 1. 

a = 0.37 a = 0.66 

N 
E"" i n  Nth order 
O f  Y P T  terms for E"" 

N P T  series 

~~ 

1.227 658 5457 1.227 658 5457 
1 I45 968 0527 
1.144 888 4019 
1.144 810 3902 
1.144 803 3336 
1 .  I44 802 5993 
1.144 802 5048 
EL:!,'! = 1 144 802 46 

-0.081 690 4930 
-0.001 079 6509 
-0.000 078 01 I6 
-0.000 007 0567 
-0.000 000 7343 
-0,000 000 0945 

E " '  i n  Nth order  
O f  N P T  

4.445 622 5609 
4.348 443 3735 
4.340 158 2927 
4.338 936 3901 
4.338 688 9538 
4.338 625 8093 
4.338 607 3261 
E ~ ~ ~ , c l  =4.338 599 

NPT series 
terms for E" '  

4.445 622 5609 
-0.097 179 1875 
-0.008 285 0808 
-0.001 221 0026 
-0.000 247 4363 
-0,000 063 1445 
-0,000 018 4525 

In order to increase the rapidity of the NPT series convergence, let us consider the 
case of the more optimal trial function (47). In this case we have 
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Table 2. 

a = 2  a = 2  

E'" in N t h  order NPT series terms E"' in N t h  order NPT series terms 
N of N P T  for E"" O f  NPT for E " '  

~~ 

0 1.171 5009887 1.171 5009887 4.359847 5425 4.359 847 5425 
1 1.145 088 6410 -0.026412 3477 4.339 231 3528 -0.020616 1896 
2 1.144 804 7700 -0,000 283 8709 4.338 624 8751 -0.000 606 4777 
3 1 144 802 4755 -0,000 002 2945 4.338 600 3329 -0,000 024 5421 
4 1.144 802 4560 -0.000 000 0192 4.338 598 9062 -0.000 001 4195 
5 1.144 802 4545 -0 000 000 0001 

Ej'li,,=1.14480246 €:::,=4.338 599 

where the polynomials P y ) (  t )  can be found from the more complex recurrence condi- 
tions: 

PF)(  1)'l 

P~~,(t)=-(4/a)t3(l-t)~~!(t)-(l/a)[4a2-8a2t 

+(12+4a')t'-(14+4r)t31P',"(t)+(3+2r) 

x { a  - [ a  + ( 5 - 2 r )/ 4a 1 t + [ (7  + 2 r / 4a 3 t '> P!,"( t 1. (51) 
After simple calculations we obtain the NPT series terms. The results are shown in 
table 2 .  The accuracy of the results of summation of these terms for E'" '  and E"' up  
to the fifth order of the NPT are now of IO-'" and respectively. We see that 
increasing the accuracy of the zeroth approximation makes it really possible to increase 
substantially the convergence rate of the series, which is in full accordance with our 
theoretical predictions. 
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